
Designing Functional Programs

CS135

Jaiden Ratti
Prof. Dave Tompkins

1221

1221 CS 135: Designing Functional Programs Jaiden Ratti

Contents
1 Functions 2

2 Design Recipe 4

3 Simple Data 4

4 Semantics 7

5 Lists 7

6 Natural Numbers 10

7 More Lists 12

8 Patterns of Recursion 15

9 Structures 17

10 Binary Trees 18

11 Mutual Recursion 21

12 General Trees 21

13 Local Definitions 22

14 First Class Values 23

15 Functional Abstraction 25

16 Generative Recursion 27

17 Graphs 29

18 Computing History 32

1

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 Functions
The computation of certain mathematical values is the motivation for the direction we move in this
course.

Two families of programming languages are Imperative and Functional. Imperative languages are based
on frequent changes to data. Functional languages are based on the computation of new values (as
opposed to transforming old ones).

CS135 uses Racket, a functional language.

A programming language must solve three problems

1. Syntax: The way we can say things

2. Semantics: What the program means

3. Ambiguity: Valid programs having exactly one meaning

Racket allowed us to develop a semantic model via substitution rules.

Values, Expressions, and Functions

Values are numbers or mathematical objects

Expressions combine values with operators and functions. I.e. sin(2π)

Functions generalize similar expressions. I.e. f(x) = x2 + 4x + 2

Functions consist of

• The name of the function

• Parameters

• Expression using the parameters as placeholders

Apply functions only to values and when there is a choice of possible substitution, take the leftmost
choice.

Use of Parentheses: Harmonization

Treating infix operators like functions, we don’t need parenthesis to specify order of operations.

3 − 2 becomes − (3, 2)

Now parentheses are only used for function application.

In Racket,

g(1, 3) becomes (g 3 1)

g(g(1, 3), f(3)) becomes (g (g 1 3) (f 3))

(6 − 4)/(5 + 7) becomes (/ (− 6 4) (+ 5 7))

Extra parentheses are harmful in Racket.

To evaluate an expression in Racket we use substitution.
1 (* (- 6 4) (+ 3 2))
2 (* 2 (+ 3 2))
3 (* 2 5)
4 10

A substitution step rewrites the leftmost subexpression eligible.

Defining Functions

Note, all code blocks in this document are from lecture material
1 (define (g x y) (+ x y))

2

1221 CS 135: Designing Functional Programs Jaiden Ratti

We can see a: name, list of parameters, and single body expression.

Examples
1 (define (f x) (sqr x))
2 (define (g x y) (+ x y))
3 (define (area r) (* pi (sqr r)))

Define is a special form that binds a name to an expression.

All instances of a parameter are replaced in a single step.

Observations

• Changing names of parameters does not change what the function does

• Different functions can use same parameter names

• Parameter order matters

Defining Constants

1 (define k 3)
2 (define p (sqr k))

Note, comments start with a semi-colon.

Helper Functions

Consider a function that determines the distance from current location to the closest of two other
locations.

1 ;; Find the distance from (cx , cy) to the closer of the two locations , (ax ,
ay) and (bx , by)

2 (define (distance -to- closer cx cy ax ay bx by)
3 (min (sqrt (+ (sqr (-ax cx)) (sqr (-ay cy))))
4 (sqrt (+ (sqr (- bx cx)) (sqr (- by cy))))))

Notice there are two instances of almost identical code. Introduce helper functions.
1 (define (distance -to- closer cx cy ax ay bx by)
2 (min (distance cx cy ax ay)
3 (distance cx cy bx by)))
4

5 (define (distance x1 y1 x2 y2)
6 (sqrt (+ sqr (- x2 x1)) (sqr (- y2 y1))))

Helper functions reduce repeated code by generalizing expressions, factor our complicated calculations,
and give meaning to operations.

Helper functions are typically placed after the function that uses them.

check − expect is a special form that we use to test our functions.
1 (check- expect (distance 0 0 3 4) 5)
2 (check- expect (distance 3 4 0 0) 5)

1 (check- expect expr-test expr- expected)

Where expr − test is the expression we want to test, and expr − expected is the expected result. This
ensures our code works properly.

Scope

The scope of an identifier is where it has effect in the program. The smallest enclosing scope has priority.
1 (define x 3)
2 (define (f x y)
3 (- x y))
4 (define (g a b)

3

1221 CS 135: Designing Functional Programs Jaiden Ratti

5 (+ a b x))
6 (+ (f 2 x) 1)

2 Design Recipe
Every program is an act of communication. The design recipe is a process for developing a function.
Its main purposes include: Helping you understand the problem, write understandable code, and write
tested code.

5 Components

1. Purpose: Describe what is being computed

2. Examples: Illustrate examples

3. Contract: Describe the types of inputs and types of outputs. Examples include Num, Int, Nat,
Any etc.

4. Definition: Header and Body

5. Tests: Test implementation of specific solution (Examples can also serve as tests but mainly test
the purpose)

1 ;; (sum -of - squares n1 n2) produces the sum of the squares of n1 and n2
2 (check- expect (sum-of- squares 3 4) 25)
3

4 ;; sum -of - squares : Num Num -> Num
5 (define (sum-of- squares n1 n2)
6 (+ (sqr n1) (sqr n2))
7

8 ;; Tests
9 (check- expect (sum-of- squares 0 0) 0)

10 (check- expect (sum-of- squares -2 7) 53)
11 (check- expect (sum-of- squares 0 2.5) 6.25)

Additional Contract Requirements

If there are any constraints required for the function to work, we must specify a requires section in our
contract.

Contract Enforcement

Racket uses dynamic typing. Thus the contract is just a comment and only accessible to programmers.
Dynamic typing allows for flexibility and confusion!

3 Simple Data
We now discuss three other types of values: Booleans, Symbols, and Strings

1 (define x 2)
2 (< x 5)

Is asking, "Is it true that the value of x is less than 5? By substitution rules, we get (2 < 5) =⇒ true.

Booleans (Bool)

<, >, ≤, ≥, = are new functions, each which produce a Boolean value. Boolean values may only be true
or false.

Predicates

A function which produces a Bool is called a predicate. Many predicate function names end with a ?.
1 (define (can-vote? age)
2 (>= age 18))

4

1221 CS 135: Designing Functional Programs Jaiden Ratti

String Predicates

Non-numeric types can have predicates.
1 (string =? " pearls " "gems") => false
2 (string =? " pearls " " pearls ") => true
3

4 (string <? " pearls " "swine") => true
5 ...

Conditional Expressions

Often expressions should take one value under some conditions, and other values under others.

Sin-squared window can be described by: f(x) =


0 for x < 0
1 for x ≥ 1
sin2(xπ/2) for 0 ≤ x < 1

We can compute this with a conditional expression:
1 (cond [(< x 0) 0]
2 [(>= x 1) 1]
3 [(< x 1) (sqr (sin (* x pi 0.5)))])

Each argument is a question/answer pair. The question is a Boolean expression. The answer is a possible
value.

We informally evaluate a cond by considering the question/answer pairs in order from top to bottom.
Evaluate a question, and if it evaluates to true, the entire cond produces the corresponding answer. If it
doesn’t evaluate to true, proceed to the next question.

If none of the questions evaluate to true? We get an error. But what if we only want to describe some
conditions?

We could use a question which always evaluates to true:
1 (define (foo n)
2 (cond
3 [(> n 0) n]
4 [(< 3 7) (- n)]))

There is a special keyword for this, else

1 (define (foo n)
2 (cond
3 [(> n 0) n]
4 [else (- n)]))

There should be at least one test for each possible answer in the conditional expression. When boundary
conditions are involved, these should be tested specifically.

1 (define (course -after-cs 135 grade)
2 (cond
3 [(< grade 40) 'CS 115]
4 [(< grade 50) 'CS 135]
5 [(< grade 60) 'CS 116]
6 [else 'CS 136]))

Four intervals with three boundary points =⇒ seven tests are required.

We can combine predicates using special forms and, or, not. These all consume and produce boolean
values.

and has value true when all of its arguments have value true (and is false otherwise)

or produces value true if at least one of its arguments is true (and is false otherwise)

not produces true if its argument is false (and is false otherwise)

5

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (and (> 5 4) (> 7 2)) => true
2 (or (>= 5 4) (7 2)) => true
3 (not (= 5 4)) => true
4 (or (> 4 5) (> 2 7) (< 9 4)) => true

Racket only evaluates as many arguments of and and or as necessary to determine the value.
1 (and (odd? x) (> x 2) (prime? x))

Tracing and

1 (and false ...) => false
2 (and true ...) => (and ...)
3 (and) => true

Tracing or

1 (or true ...) => true
2 (or false ...) => (or ...)
3 (or) => false

Closed-box vs Open-box Testing

Closed-box tests: Testing without knowledge of the details of the code

Open-box tests: Testing implementation

Simplifying Conditional Expressions

1 (define (course -after-cs 135 grade)
2 (cond
3 [(< grade 40) 'CS 115]
4 [(and (>= grade 40) (< grade 50)) 'CS 135]
5 [(and (>= grade 50) (< grade 60)) 'CS 116]
6 [(>= grade 60) 'CS 136]

We can simplify to
1 (define (course -after-cs 135 grade)
2 (cond
3 [(< grade 40) 'CS 115]
4 [(< grade 50) 'CS 135]
5 [(< grade 60) 'CS 116]
6 [else 'CS 136]

Nested Conditionals

Consider: Free admission for people after 5pm, otherwise the cost is the person’s age: 10 and under are
charged 5 dollars, and everyone else is charged 10 dollars.

Natural solution
1 (define (admission after 5? age)
2 (cond
3 [after 5? 0]
4 [else
5 (cond
6 [(<= age 10) 5]
7 [else 10])]))

But we can further simplify this
1 (define (admission after 5? age)
2 (cond
3 [after 5? 0]
4 [(<= age 10) 5]
5 [else 10]))

6

1221 CS 135: Designing Functional Programs Jaiden Ratti

Symbolic Data

Symbol is defined using an apostrophe.
1 (define home 'Earth)
2 (symbol =? home 'Mars) => false
3 (symbol ? home) =? true

Strings

Strings are a sequence of characters between double quotes. Examples "hello". Strings are compound
data and symbols do not have certain characters in them (no spaces). It is more efficient to compare two
symbols than two strings.

1 (string =? "alpha" "bet") => false
2 (string - append "alpha" "bet") => " alphabet "
3 (string - length " perpetual ") => 9

4 Semantics
(This is just tracing of different functions which have already been outlined when introduced above).

5 Lists
We can create a list in Racket:

1 (define wish-list
2 (cons " comics "
3 (cons "toys"
4 (cons "wii"
5 (cons " donkey kong" empty)))))
6

7 (length wish-list) => 4
8 (first wish-list) => " comics "
9 (empty? wish-list) => false

Functions can also produce lists. See rest:
1 (rest wish-list) =>
2 (cons "toys"
3 (cons "wii"
4 (cons " donkey kong" empty)))

Appending is as follows:
1 (cons " bicycle " wish-list) =>
2 (cons " bicycle "
3 (cons " comics "
4 (cons "toys"
5 (cons "wii"
6 (cons " donkey kong" empty)))))

What is a List?

A list is a recursive structure defined in terms of a smaller list.

A list of 3 concerts is a concert followed by a list of 2 concerts (etc.)

A list of 1 concert is a concert followed by a list of 0 concerts.

A list of zero concerts is special. We call it the empty list. It is represented in Racket by empty.

(cons v lst) creates a list by adding the value v to the beginning of list lst.

7

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (define concerts 0 empty)
2

3 (define concerts 1 (cons " Waterboys " empty))
4

5 (define concerts 2 (cons " DaCapo " concerts 1))

Basic List Constructs

• empty: A value representing an empty list

• (cons v lst): Consumes a value and a list; producing a new longer list

• (first lst): Produces the first value of the list

• (rest lst): Produces the same list without the first value

• (empty? v): Produces true if empty, and false otherwise

• (cons? v): Produces true if it is a cons and false otherwise.

• (list? v): Equivalent to (or (cons? v) (empty? v))

To extract the second element of a list we can do:
1 (first (rest lst))

Simple Functions on Lists

1 ;; (next - concert loc) produces the next concert to attend (or empty) if loc is
empty

2

3 ;; next - concert : (listof Str) -> Str
4 (define (next- concert loc)
5 (cond
6 [(empty? loc) ""]
7 [else (first loc)]))

1 ;; (same - consec ? loc) determines if next two concerts are the same
2 ;; Examples
3 (check- expect (same- consec ? (cons "a" (cons "a" empty))) true)
4 (check- expect (same- consec ? (cons "a" (cons "b" empty))) false)
5 (check- expect (same- consec ? (cons "a" empty)) false)
6

7 ;; same - consec ?: (listof Str) -> Bool
8 (define (same- consec ? loc)
9 (and (not (empty? loc))

10 (not (empty? (rest loc)))
11 (string =? (first loc) (first (rest loc)))))

List values are

1. empty

2. (cons v l), where v is any Racket value, and l is a list value.

We will develop data definitions and function templates.
1 ;; A (listof Str) is one of:
2 ;; empty
3 ;; (cons Str (listof Str))

This is a recursive data definition (the definition refers to itself). A base case cannot refer to itself
(empty).

We can generalize this

8

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 ;; A (listof X) is one of:
2 ;; empty
3 ;; (cons X (listof X))
4

5 ;; Can be processed to
6

7 (define (listof -X- temlpate lox)
8 (cond
9 [(empty? lox) ...]

10 [(cons? lox) ...]))

We can go a step further,
1 (define (listof -X- temlpate lox)
2 (cond
3 [(empty? lox) ...]
4 [(cons? lox) (... (first lox)
5 (listof -X- template (rest lox)))]))

Because (rest lox) is of type (listof X), we can use recursion in this manner.

We will write a function to count the number of concerts in a list of concerts.

There are four crucial questions to help think about functions when consuming a list:

1. What should the function produce in the base case?

2. What should the function do in the first element (in a non-empty list)

3. What should calling the function on the rest of the list produce?

4. How should the function combine 2 and 3 to produce the answer for the entire list?
1 (check- expect (count- concerts (cons "a" (cons "b" empty))) 2)
2

3 ;; count - concerts : (listof Str) -> Nat
4 (define (count- concerts loc)
5 (cond
6 [(empty? loc) 0]
7 [else (+ 1 (count- concerts (rest loc)))]))

This is a recursive function. Look closely at how it traces. It is repeatedly adding 1 for every element in
the list, and concludes by adding the final term 0 when the list is empty.

Here is the condensed trace of the example
1 (count- concerts (cons "a" (cons "b" empty)))
2 (+ 1 (count- concerts (cons "b" empty)))
3 (+ 1 (+ 1 (count- concerts empty)))
4 (+ 1 (+ 1 0))
5 2

Producing the sum of all values in the list
1 (define (sum-list loc)
2 (cond
3 [(empty? loc) 0]
4 [else (+ (first loc) (count- concerts (rest loc)))]))

Termination

It is important that our functions always terminate. In our examples above, there are two conditions.
Either we have reached the base case (and we will terminate). Or we are in a recursive case, thus
approaching the base case.

Thinking Recursively

• Get the base case correct

9

1221 CS 135: Designing Functional Programs Jaiden Ratti

• Assume the function correctly solves a problem of size n

• Figure out how to use this solution to solve the problem of size n + 1

This is similar to induction!

Sometimes each x in (listof x) requires further processing.
1 (define (listof -X- template lox)
2 (cond
3 [(empty? lox) ...]
4 [(cons? lox) (... (X- template (first lox)) ...
5 ... (listof -X- template (rest lox)) ...)]))

These templates provide basic shape. Later we will see an abstraction mechanism (hof) that can reduce
the need for templates.

Patterns of Recursion

What we have seen so far is simple recursion. The form of the code matches the form of the data
definition.

Note: There are built-in functions for lists, length and member? which takes an element of any type and
a list, and returns true if the element is in the list (and false otherwise).

Producing Lists from Lists

Consider a list which produces the same list with each number negated.
1 ;; (negate -list lon) produces a list with every number in lon negated
2 (check- expect (negate -list (cons 2 (cons -12 empty)))
3 (cons -2 (cons 12 empty)))
4

5 ;; negate -list: (listof Num) -> (listof Num)
6 (define (negate -list lon)
7 (cond
8 [(empty? lon) empty]
9 [else (cons (- (first lon)) (negate -list (rest lon)))]))

Sometimes computations only make sense with a non-empty list. We can outline this as (ne-listof X) in
our design recipe.

Counting Characters in a String

1 (check- expect (count-char/list #\e (string ->list " beekeeper ")) 5)
2

3 ;; count -char/list: Char (listof Char) -> Nat
4 (define (count-char/list ch loc)
5 (cound
6 [(empty? loc) 0]
7 [else (+ (cond [(char =? ch (first loc)) 1]
8 [else 0])
9 (count-char/list ch (rest loc)))]))

Wrapper Functions

Simple functions that wrap the main function and take care of housekeeping details.

For example,
1 (define (count-char ch s)
2 (count-char/list ch (string ->list s)))

6 Natural Numbers
Definition of Natural Numbers

Peano axioms to define the natural numbers include:

10

1221 CS 135: Designing Functional Programs Jaiden Ratti

• 0 is a natural number

• For every natural number n, S(n) is a natural number

1 can be represented as S(0), 2 as S(S(0)) and so on.

S(n) is a successor function. Returns the next natural number.

add1 in Racket is our successor function.
1 (add1 0) => 1
2 (add1 1) => 2
3 (add1 2) => 3

Thus
1 ;; A Nat is one of:
2 ;; 0
3 ;; (add1 Nat)

Nat-template
1 (define (nat- template n)
2 (cond
3 [(zero? n) ...]
4 [else (... n ...
5 ... (nat- template (sub1 n)) ...)]))

The function countdown consumes a natural number n and produces a decreasing list of all natural
numbers less than or equal to n.

1 (check- expect (countdown 2) (cons 2 (cons 1 (cons 0 empty))))
2

3 ;; countdown : Nat -> (listof Nat)
4 (define (countdown n)
5 (cond
6 [(zero? n) (cons 0 empty)]
7 [else (cons n (countdown (sub1 n)))]))

Intervals of Natural Numbers

We use Z to denote the integers. We can add subscripts to define subsets (intervals).

For example Z≥0 defines the non-negative integers.

We can use this to make the function countdown − to

1 (check- expect (countdown -to 4 2) (cons 4 (cons 3 (cons 2 empty))))
2

3 ;; countdown -to: Int Int -> (listof Int)
4 ;; requires : n >= base
5 (define (countdown -to n base)
6 (cond
7 [(= n base) (cons base empty)]
8 [else (cons n (countdown -to (sub1 n) base))]))

This also works with negative numbers.

Repetition in other Languages

In imperative languages we often use loops. In Racket we use recursion.

Note, we can use reverse to reverse a list. But don’t rely on this to fix recursive solutions.

11

1221 CS 135: Designing Functional Programs Jaiden Ratti

7 More Lists
1 ;; (sort lon) sorts the elements of lon in non - decreasing order
2

3 (define (sort lon)
4 (cond
5 [(empty? lon) empty]
6 [else (insert (first lon)
7 (sort (rest lon)))]))

We define insert to be a recursive helper function that consumes a number and a sorted list, and inserts
the number into the sorted list.

1 (define (insert n slon)
2 (cond
3 [(empty? slon) ...]
4 [else (... (first slon) ...
5 (insert n (rest slon)) ...)]))

We will answer our four questions to determine how to structure the above code. When slon is empty,
the result is the list just containing n. Number 2: the sorted list with n inserted in the correct place.
Number 3: n is the first number in the result if it is less than or equal to the first number in slon.

1 (define (insert n slon)
2 (cond
3 [(empty? slon) (cons n empty)]
4 [(<= n (first slon)) (cons n slon)]
5 [else (cons (first slon) (insert n (rest slon)))]

Combining the sort and insert functions gives us insertion sort.

List Abbreviations

The expression
1 (cons exp1 (cons exp2 (... (cons expn empty) ...)))

can be abbreviated as
1 (list exp1 exp2 ... expn)

1 (cons 4 (cons 2 (cons 1 (cons 5 empty))))
2 <=>
3 (list 4 2 1 5)

cons contains exactly two arguments. The length is known only when the program is running.

list consumes any number of arguments. The length is known when we write the program.
1 (second my-list)
2 <=>
3 (first (rest my-list))

The same is defined from third to eighth

Lists Containing Lists

1 (list (list 3 4))
2 (list (cons 3 (cons 4 empty)))
3 (cons (list 3 4) empty)
4 (cons (cons 3 (cons 4 empty)) empty)

We can have lists of lists

12

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 ;; A Payroll is one of:
2 ;; empty
3 ;; (cons (list Str Num) Payroll)
4

5 (list (list "Asha" 7000)
6 (list "Joe" 100000)
7 (list "Sam" 50000)
8

9 ;; A TaxRoll is one of:
10 ;; empty
11 ;; (cons (list Str Num) TaxRoll)
12

13 (list (list "Asha" 700)
14 (list "Joe" 16500)
15 (list "Sam" 5500))

We arrive at
1 ;; compute -taxes: Payroll -> TaxRol
2

3 (define (compute -taxes payroll)
4 (cond [(empty? payroll) empty]
5 [(cons? payroll)
6 (cons (list (name (first payroll))
7 (tax- payable (amount (first payroll))))
8 (compute -taxes (rest payroll)))]))

We will later see nested lists. These are lists that contain lists, and so on to arbitrary depth.

Dictionaries

A dictionary contains a number of unique keys, each with an associated value.

Examples:

• Stocks: Keys are symbols, values are prices

• Dictionary: Keys are words, values are definitions

Operations we can perform on dictionaries include lookups, adding (key,value) pairs, and removing
(key,value) pairs.

Association List

We can store the pair as a two-element list. We can use natural numbers as keys and strings as values.
1 ;; An Association List (AL) is one of:
2 ;; empty
3 ;; (cons (list Nat Str) AL)
4 ;; Requires : each key (Nat) is unique

We can use this to make the template
1 (define (al- template alst)
2 (cond [(empty? alst) ...]
3 [else (... (first (first alst)) ...
4 (second (first alst)) ...
5 (al- template (rest alst)))]))

Lookup Operation

1 (check- expect (lookup -al 2 (list (list 8 "Asha")
2 (list 2 "Joe")
3 (list 5 "Sam"))) "Joe")
4 (check- expect (lookup -al 1 (list 8 "Asha")) false)

13

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (define (key kv) (first kv))
2 (define (val kv) (second kv))
3

4 ;; (lookup -al k alst) produces the value corresponding to the key k, or false
if there is no k

5

6 (define (lookup -al k alst)
7 (cond
8 [(empty? alst) false]
9 [(= k (key (first alst))) (val (first alst))]

10 [else (lookup -al k (rest alst))]))

Two-Dimensional Data
1 (mult-table 3 4) =>
2 (list (list 0 0 0 0)
3 (list 0 1 2 3)
4 (list 0 2 4 6))

We can make this
1 (define (cols-to c r nc)
2 (cond
3 [(>= c nc) empty]
4 [else (cons (* r c) (cols-to (add1 c) r nc))]))
5

6 (define (rows-to r nr nc)
7 (cond
8 [(>= r nr) empty]
9 [else (cons (cols-to 0 r nc) (rows-to (add1 r) nr nc))]))

10

11 (define (mult-table nr nc)
12 (rows-to 0 nr nc))

We will now consider more complicated types of recursion

Case 1: Just one List
1 (define (my- append lst1 lst2)
2 (cond
3 [(empty? lst1) lst]
4 [else (cons (first lst1)
5 (my- append (rest lst1) lst2))]))

ls2 is just along for the ride.

Case 2: Processing in Lockstep

To process two lists in lockstep, they must be the same length.

Because the two lists must be the same length, (empty? lst1) ⇐⇒ (empty? lst2)

Our template is thus,
1 ;; lockstep - template : (listof X) (listof Y) -> Any
2 ;; Requires : (length lst 1) = (length lst 2)
3 (define (lockstep - template lst1 lst2)
4 (cond
5 [(empty? lst1) ...]
6 [else
7 (... (first lst1) ... (first lst2) ...
8 (lockstep - template (rest lst1) (rest lst2)) ...)]))

An example is dot product.

14

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (define (dot- product lon1 lon2)
2 (cond
3 [(empty? lon1) 0]
4 [else (+ (* (first lon1) (first lon2))
5 (dot- product (rest lon1) (rest lon2)))]))

Case 3: Processing at Different Rates

Now all four possibilities of empty/nonempty are possible.
1 (define (twolist - template lon1 lon2)
2 (cond
3 [(and (empty? lon1) (empty? lon2)) ...]
4 [(and (empty? lon1) (cons? lon2)) ...]
5 [(and (cons? lon1) (empty? lon2)) ...]
6 [(and (cons? lon1) (cons? lon2)) ...]))

An example is merging two sorted lists.
1 (check- expect (merge (list 3 4) (list 2)) (list 2 3 4))
2

3 (define (merge lon1 lon2)
4 (cond
5 [(and (empty? lon1) (empty? lon2)) empty]
6 [(and (empty? lon1) (cons? lon2)) lon2]
7 [(and (cons? lon1) (empty? lon2)) lon1]
8 [(and (cons? lon1) (cons? lon2))
9 (cond

10 [(< (first lon1) (first lon2))
11 (cons (first lon1) (merge (rest lon1) lon2))]
12 [else (cons (first lon2) (merge lon1 (rest lon2)))])]))

Testing List Equality

1 (define (list =? lst1 lst2)
2 (cond
3 [(and (empty? lst1) (empty? lst2)) true]
4 [(and (empty? lst1) (cons? lst2)) false]
5 [(and (cons? lst1) (empty? lst2)) false]
6 [(and (cons? lst1) (cons? lst2))
7 (and (= (first lst1) (first lst2))
8 (list =? (rest lst1) (rest lst2)))]))

There is built-in list equality (equal?)
1 (check- expect (at-least? 3 'red (list 'red 'blue 'red 'green)) false)
2 (check- expect (at-least? 1 7 (list 5 4 0 5 3 7)) true)
3

4 ;; at -least? Nat Any (listof Any) -> Bool
5 (define (at-least? n elem lst)
6 (cond
7 [(zero? n) true]
8 [(equal? (first lst) elem) (at-least? (sub1 n) elem (rest lst))]
9 [else (at-least? n elem (rest lst))]))

8 Patterns of Recursion
All the recursion done so far has been simple recursion. We will now use accumulative recursion, and
learn how to recognize mutual recursion and generative recursion.

For certain applications (max − list), simple recursion can make up to 2n − 1 recursive applications on
a list of length n. This is exponential blowup.

Fast O(n)

15

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (define (max-list-v1 lon)
2 (cond
3 [(empty? (rest lon)) (first lon)]
4 [else (max (first lon) (max-list-v1 (rest lon)))]))

Slow O(2n)
1 (define (max-list-v2 lon)
2 (cond
3 [(empty? (rest lon)) (first lon)]
4 [(> (first lon) (max-list-v2 (rest lon))) (first lon)]
5 [else (max-list-v2 (rest lon))]))

Accumulative Recursion

We can pass the largest value we’ve seen through a parameter called an accumulator.
1 ;; max -list/acc: (listof Num) Num -> Num
2 (define (max-list/acc lon max-so-far)
3 (cond
4 [(empty? lon) max-so-far]
5 [(> (first lon) max-so-far)
6 (max-list/acc (rest lon) (first lon))]
7 [else (max-list/acc (rest lon) max-so-far)]))
8

9 (define (max-list-v3 lon)
10 (max-list/acc (rest lon) (first lon)))

The accumulatively recursive function usually has a wrapper function that sets the initial values of the
accumulators.

Reversing a list using simple recursion is O(n2) worst-case. Using an accumulator it becomes O(n).

Fibonacci

Using simple recursion,
1 (define (fib n)
2 (cond
3 [(< n 2) n]
4 [else (+ (fib (- n 1)) (fib (- n 2)))]))

This works for small n, but suffers from ϕn, where ϕ = 1+
√

5
2

Mutual Recursion

Mutual recursion occurs when two or more functions apply each other. f applies g and g applies f .
1 (define (game state)
2 (a-turn state))
3

4 (define (a-turn state)
5 (cond
6 [(a-won? state) 'A-WON]
7 [else (b-turn (strategy -a state))]))
8

9 (define (b-turn state)
10 (cond
11 [(b-won? state) 'B-WON]
12 [else (a-turn (strategy -b state))]))

Generative Recursion

We can use our knowledge from MATH135 to solve for gcd in Racket.

16

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 ;; euclid -gcd: Nat Nat -> Nat
2 (define (euclid -gcd n m)
3 (cond
4 [(zero? m) n]
5 [else (euclid -gcd m (remainder n m))]))

The arguments in the recursive call were generated by doing a computation on m and n. Thus we have
generative recursion. Easy to get wrong and hard to debug.

9 Structures
Racket’s structures define trivial functions automatically.

Posn is a built-in structure with two fields that contain numbers for x and y coordinates. Can make a
Posn using a constructor function, make − posn

1 ;; make -posn: Num Num -> Posn
2

3 (define my-posn (make-posn 4 3))

Posn has two selector functions. These produce the field which has the same name of the selector.
1 (posn-x (make-posn 4 3)) => 4
2 (posn-y (make-posn 4 3)) => 3

We have type predicates for this as well. (posn? my − posn) =⇒ true.

Producing a Posn

1 ;; offset -a- little : Num Num -> Posn
2 (define (offset -a- little x y)
3 (make-posn (+ x 3) (+ y 3)))

We can make custom structures.
1 (define struct -name (field0 field1 ... fieldn))
2

3 (define - struct inventory (desc price available))

This automatically creates several functions (Constructor (make − inventory), Predicate, Selectors).
1 (define lentils (make- inventory "dry lentils " 2.49 42))
2

3 (check- expect (total-value (make- inventory "rice" 5.50 6)) 33.00)
4

5 ;; We can extract with
6

7 (inventory -desc lentils) => "dry lentils "
8 (inventory -price lentils) => 2.49

The design recipe of custom structures looks like
1 (define - struct inventory (desc price available))
2 ;; an Inventory is a (make - inventory Str Num Nat)
3 ;; Requires : price >= 0

Structure Templates

1 (define (inventory - template item)
2 (... (inventory -desc item)
3 ... (inventory -price item)
4 ... (inventory - available item) ...))

Structures can automatically generate significant code as opposed to lists.

We will see quote notation to compact lists.

17

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 '(1 2 3) => (list 1 2 3)
2 '(a b c) => (list 'a 'b 'c)
3 '(1 ("abc" earth) 2) => (list 1 (list "abc" 'earth) 2)
4 '(1 (+ 2 3)) => (list 1 (list '+ 2 3))

10 Binary Trees
The expression ((2 ∗ 6) + (5 ∗ 2))/(5 − 3) can be represented as a tree. / would be the root node, + and
- its child nodes, * and * +’s child nodes etc.

A tree is a set of nodes and edges where an edge connects two distinct nodes. One node must be the
root, every node other than the root is a parent or child. A tree must be connected.

Other important terms.

• Leaves: Nodes with no children

• Internal Nodes: Nodes that have children

• Labels: Data attached to node

• Ancestors of node n: n itself, the parent of n, and the parents of parents of n, etc.

• Descendants of n: All the node that have n as an ancestor (including n).

• Subtree rooted at n: All of the descendants of n.

A binary tree is a tree with at most two children for each node. Fundamental part of computer science.

Binary tree data definition
1 (define - struct node (key left right))
2 ;; A Node is a (make -node Nat BT BT)
3

4 ;; A binary tree (BT) is one of:
5 ;; empty
6 ;; Node
7

8 ;; bt - template : BT -> Any
9 (define (bt- template t))

Count the nodes in a tree.
1 ;; (count -nodes tree k) counts the number of nodes in the tree that have a key

equal to k
2

3 ;; count -nodes: BT Nat -> Nat
4 (define (count-nodes tree k)
5 (cond
6 [(empty? tree) 0]
7 [(node? tree) (+ (cond
8 [(= k (node-key tree)) 1]
9 [else 0])

10 (count-nodes (node-left tree) k)
11 (count-nodes (node-right tree) k))]))

Increment Keys
1 ;; increment : BT -> BT
2 (define (increment tree)
3 (cond
4 [(empty? tree) empty]
5 [(node? tree) (make-node (add1 (node-key tree))
6 (increment (node-left tree))
7 (increment (node-right tree)))]))

18

1221 CS 135: Designing Functional Programs Jaiden Ratti

Searching Binary Trees

We will produce true if the key is in the tree, and false otherwise.

If the root node contains the key we are looking for, produce true. Otherwise, recursively search in the
left subtree and the right subtree (if either recursive search finds the key, produce true, otherwise false).

1 ;; search : Nat BT -> Bool
2 (define (search -bt k tree)
3 (cond
4 [(empty? tree) false]
5 [(= k (node-key tree)) true]
6 [else (or (search -bt k (node-left tree))
7 (search -bt k (node-right tree)))]))

We will show the path to a key. Assume for now there are no duplicates in the tree.
1 ;; search -bt -path: Nat BT -> (anyof false (listof Sym))
2 (define (search -bt-path k tree)
3 (cond
4 [(empty? tree) false]
5 [(= k (node-key tree)) '()]
6 [(list? (search -bt-path k (node-left tree)))
7 (cons 'left (search -bt-path k (node-left tree)))]
8 [(list? (search -bt-path k (node-right tree)))
9 (cons 'right (search -bt-path k (node-right tree)))]

10 [else false]))

But this has double calls to search − bt − path.

Let’s improve it
1 ;; search -bt -path -v2: Nat BT -> (anyof false (listof Sym))
2 (define (search -bt-path-v2 k tree)
3 (cond
4 [(empty? tree) false]
5 [(= k (node-key tree)) '()]
6 [else (choose -path-v2 (search -bt-path-v2 k (node-left tree))
7 (search -bt-path-v2 k (node-right tree)))]))
8 (define (choose -path-v2 left-path right-path)
9 (cond

10 [(list? left-path) (cons 'left left-path)]
11 [(list? right-path) (cons 'right right-path)]
12 [else false]))

We can make searching more efficient by creating a Binary Search Tree. Placing the keys in a particular
order can improve the running time of our search.

1 ;; A Binary Search Tree (BST) is one of:
2 ;; empty
3 ;; a Node
4

5 (define - struct node (key left right))
6 ;; A Node is a (make -node Nat BST BST)
7 ;; Requires : key > every key in left BST
8 ;; key < every key in right BST

key > ∀key ∈ left

key < ∀key ∈ right.

This property also holds in each subtree.
1 ;; Example
2 (make-node 5
3 (make-node 1 empty empty)
4 (make-node 7

19

1221 CS 135: Designing Functional Programs Jaiden Ratti

5 (make-node 6 empty empty)
6 (make-node 14 empty empty)))

We now save one recursive function application.
1 ;; search -bst: Nat BST -> Bool
2 (define (search -bst n t)
3 (cond
4 [(empty? t) false]
5 [(= n (node-key t)) true]
6 [(< n (node-key t)) (search -bst n (node-left t))]
7 [(> n (node-key t)) (search -bst n (node-right t))]))

Adding to a BST

If our tree is empty, then we create the one node. If our tree already contains the value we want to add,
we just produce the tree. Otherwise, our value must go either in the left or right subtree. We only need
to make one recursive function application.

We can augment our node to have additional data.
1 (define - struct node (key val left right))

An augmented BST can serve as a dictionary.
1 (define - struct node (key val left right))
2 ;; A Binary Search Tree Dictionary (BSTD) is either :
3 ;; empty
4 ;; (make -node Nat Str BSTD BSTD)
5

6 (define (search -bst-dict k t)
7 (cond
8 [(empty? t) false]
9 [(= k (node-key t)) (node-val t)]

10 [(< k (node-key t)) (serach -bst-dict k (node-left t))]
11 [(> k (node-key t)) (serach -bst-dict k (node-right t))]))

We can use trees to represent arithmetic.
1 ;; A binary artihmetic expression (BinExp) is one of:
2 ;; a Num
3 ;; A BInode
4

5 (define - struct binode (op left right))
6 ;; BInode is a (make - binode (anyof '* '+ '/ '-) BinExp BinExp)
7

8 (make- binode '/
9 (make- binode '+ (make- binode '* 2 6)

10 (make- binode '* 5 2))
11 (make- binode '- 5 3))

1 ;; eval: BinExp -> Num
2 (define (eval ex)
3 (cond
4 [(number ? ex) ex]
5 [(binode ? ex) (eval- binode ex)]))
6

7 (define (eval- binode node)
8 (cond
9 [(symbol =? '* (binode -op node))

10 (* (eval (binode -left node)) (eval (binode -right node)))]
11 [(symbol =? '/ (binode -op node))
12 (/ (eval (binode -left node)) (eval (binode -right node)))]
13 [(symbol =? '+ (binode -op node))
14 (+ (eval (binode -left node)) (eval (binode -right node)))]

20

1221 CS 135: Designing Functional Programs Jaiden Ratti

15 [(symbol =? '- (binode -op node))
16 (- (eval (binode -left node)) (eval (binode -right node)))]

We can refactor this to be,
1 (define (eval ex)
2 (cond
3 [(number ? ex) ex]
4 [(binode ? ex) (eval- binode (binode -op ex)
5 (eval (binode -left ex))
6 (eval (binode -right ex)))]))
7

8 (define (eval- binode op left-val right-val)
9 (cond

10 [(symbol =? op '*) (* left-val right-val)]
11 [(symbol =? op '/) (/ left-val right-val)]
12 [(symbol =? op '+) (+ left-val right-val)]
13 [(symbol =? op '-) (- left-val right-val)]

11 Mutual Recursion
Mutual recursion occurs when two or more functions apply each other (f applies g and g applies f).

1 (define (is-even? n)
2 (cond
3 [(= 0 n) true]
4 [else (is-odd? (sub1 n))]))
5

6 (define (is-odd? n)
7 (cond
8 [(= 0 n) false]
9 [else (is-even? (sub1 n))]))

Mutual Recursion on a List
1 (define (keep- alternates lst)
2 (cond
3 [(empty? lst) empty]
4 [else (cons (first lst) (drop- alternates (rest lst)))]))
5

6 ;; (drop - alternates lst) drops the first element of the list and
7 ;; keeps the alternating elements from the rest
8 (define (drop- alternates lst)
9 (cond

10 [(empty? lst) empty]
11 [else (keep- alternates (rest lst))]))

12 General Trees
General trees have an arbitrary number of children (subtrees).

1 ;; An Arithmetic Expression (AExp) is one of:
2 ;; Num
3 ;; Opnode
4

5 (define - struct opnode (op args))
6 ;; an OpNode is a
7 ;; (make - opnode (anyof '* '+) (listof AExp))

This is mutual recursion.

21

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (check- expect (eval (make- opnode '+ (list 1 2 3 4))) 10)
2

3 ;; eval: AExp -> Num
4 (define (eval exp)
5 (cond
6 [(number ? exp) exp]
7 [(opnode ? exp) (apply (opnode -op exp)
8 (opnode -args exp))]))
9

10 ;; apply: (anyof '+ '*) (listof AExp) -> Num
11 (define (apply op args)
12 (cond
13 [(empty? args)
14 (cond
15 [(symbol =? op '+) 0]
16 [(symbol =? op '*) 1])]
17 [(symbol =? op '+) (+ (eval(first args))
18 (apply op (rest args)))]
19 [(symbol =? op '*) (* (eval(first args))
20 (apply op (rest args)))]

We can use an alternate data definition.
1 ;; An alternate arithmetic expression (AltAExp) is one of:
2 ;; a Num
3 ;; (cons (anyof '* '+) (listof AltAExp))

We now have the beginnings of a Racket interpreter.

13 Local Definitions
Functions can be arbitrarily nested.

1 (local [(define x_1 exp_1) ... (define x_n exp_n)] bodyexp)

Heron’s formula:
√

s(s − a)(s − b)(s − c), where s = (a + b + c)/2.

Local provides a natural way to bring the definition and use together
1 (define (t-area-v4 a b c)
2 (local [(define s (/ (+ a b c) 2))]
3 (sqrt (* s (- s a) (- s b) (-s c)))))

A define within a local expression may reuse a name which has already been bound to another value.

We define the informal substitution rule for local to replace every name defined in local with a fresh
name.

Benefits of using local

• Clarity

• Efficiency

• Encapsulation

• Scope

Clarity: Meaningful names
1 (define (distance p1 p2)
2 (local [(define delta-x (- (coord-x p1) (coord-x p2)))
3 (define delta-y (- (coord-y p1) (coord-y p2)))] (sqrt (+ (sqr
4 delta-x) (sqr delta-y)))))

22

1221 CS 135: Designing Functional Programs Jaiden Ratti

Efficiency: Avoiding Recomputation

Encapsulation: Hiding stuff. More of this in CS246.

Local can also work with mutually recursive functions.
1 ;; my -even ?: Nat -> Bool
2 (define (my-even? n)
3 (local [(define (is-even? n)
4 (cond
5 [(= n 0) true]
6 [else (is-odd? (sub1 n))]))
7 (define (is-odd? n)
8 (cond
9 [(= n 0) false]

10 [else (is-even? (sub1 n))]))]
11 (is-even? n)))

Example: Insertion Sort
1 (define (isort lon)
2 (local [(define (insert n slon)
3 (cond
4 [(empty? slon) (cons n empty)]
5 [(<= n (first slon)) (cons n slon)]
6 [else (cons (first slon) (insert n (rest slon)))]))]
7 (cond
8 [(empty? lon) empty]
9 [else (insert (first lon) (isort (rest lon)))])))

The binding occurrence of a name is its use in a definition, or formal parameter to a function.

The associated bound occurrences are the uses of that name that correspond to that binding.

The lexical scope of a binding occurrence is all places here that binding has effect.

Global scope is the scope of top-level definitions.

14 First Class Values
Racket is a functional programming language, primarily because Racket’s functions are first class values.

Functions can be consumed as function arguments, produced as function results, bound to identifiers,
stored in lists and structures.

Examples:

Consider
1 (define (eat- apples lst)
2 (cond
3 [(empty? lst) empty]
4 [(not (symbol =? (first lst) 'apple))
5 (cons (first lst) (eat- apples (rest lst)))]
6 [else (eat- apples (rest lst))]))
7

8 (define (keep-odds lst)
9 (cond

10 [(empty? lst) empty]
11 [(odd? (first lst))
12 (cons (first lst) (keep-odds (rest lst)))]
13 [else (keep-odds (rest lst))]))

We can abstract out the differences.

23

1221 CS 135: Designing Functional Programs Jaiden Ratti

1 (define (my- filter pred? lst)
2 (cond
3 [(empty? lst) empty]
4 [(pred? (first lst))
5 (cons (first lst) (eat- apples (rest lst)))]
6 [else (eat- apples (rest lst))]))

The built-in function filter performs the same actions as my − filter.

Filter is an example of a higher order function. Higher order functions consume a function or produce
a function.

Using my-filter
1 (define (keep-odds lst) (my- filter odd? lst))
2

3 (define (not- symbol -apple? item) (not (symbol =? item 'apple)))
4 (define (eat- apples lst) (my- filter not- symbol -apple? lst))

Advantages of functional abstraction

1. Reducing code size

2. Avoiding duplicate code

3. Fix bugs in one place instead of many

4. Improving one functional abstraction improves many applications

The body of local can produce such a function as a value.

Here is a small example.
1 (define (make-adder n)
2 (local [(define (f m) (+ n m))]
3 f))
4

5 (define add2 (make-adder 2))
6 (define add3 (make-adder 3))
7

8 (add2 3) -> 5
9 (add3 10) -> 13

Using local gives us a way to create semi-custom functions on the spot to use elsewhere.

We can use this method for eval and apply.

We can use the contract for a function as its type.
1 ;; (lookup -al key al) finds the value in al corresponding to key
2 ;; lookup -al: Sym (listof (list Sym (Num Num -> Num))) ->
3 ;; anyof false (Num Num -> Num))
4 (define (lookup -al key al)
5 (cond
6 [(empty? al) false]
7 [(symbol =? key (first (first al))) (second (first al))]
8 [else (lookup -al key (rest al))]))

We will usually have a dependency between the type of the predicate and the type of list.

To express this, we use a type variable, usually X, and use it in different places where the same type is
needed.

Filter produces a list of the same type that it consumes.

Therefore the contract is
1 ;; filter : (X -> Bool) (listof X) -> (listof X)

24

1221 CS 135: Designing Functional Programs Jaiden Ratti

Filter is polymorphic or generic.

Many difficulties in using higher order functions can be overcome by careful attention to contracts.

15 Functional Abstraction
Abstraction is the process of finding similarities and forgetting unimportant differences.

A function is an example.

Racket provides a mechanism for constructing a nameless function which can then be used as an argu-
ment.

1 (local [(define (name-used-once x_1 ... x_n) exp)]
2 name-used-once)
3

4 ;; can also be written as
5

6 (lambda (x_1 ... x_n) exp)

Lambda can be thought of as a make-function.

We can use lambda to replace
1 (define (eat- apples lst)
2 (filter (local [(define (not- symbol -apple? item)
3 (not (symbol =? item 'apple)))]
4 not- symbol -apple?)
5 lst))
6

7 (define (eat- apples lst)
8 (filter (lambda (item) (not (symbol =? item 'apple))) lst))

We can also simplify make-adder.
1 (define (make-adder n)
2 (local [(define (f m) (+ n m))]
3 f))
4

5 (define (make-adder n)
6 (lambda (m) (+ n m)))

Lambda (λ) is available in Intermediate Student with Lambda. We will see this its important in the last
lecture.

1 (define make-adder
2 (lambda (x)
3 (lambda (y)
4 (+ x y))))
5

6 (define make-adder (lambda (x) (lambda (y) (+ x y))))
7 ((make-adder 3) 4)
8 (((lambda (X) (lambda (y) (+ x y))) 3) 4)
9 ((lambda (y) (+ 3 y)) 4)

10 (+ 3 4) -> 7

We can also look to abstract the commonality for map.
1 (define (my-map f lst)
2 (cond
3 [(empty? lst) empty]
4 [else (cons (f (first lst))
5 (my-map f (rest lst)))]))
6

7 (my-map f (list x_1 x_2 ... x_n))

25

1221 CS 135: Designing Functional Programs Jaiden Ratti

8 ;; =
9 (list (f x_1) (f x_2) ... (f x_n))

This function, my − map is also a built in higher order function map.

We can also abstract from functions that consume lists and produce simple values.
1 (define (list- template lst)
2 (cond
3 [(empty? lst) ...]
4 [else (... (first lst) ...
5 (list- template (rest lst)) ...)]))
6

7

8 (define (my-foldr combine base lst)
9 (cond

10 [(empty? lst) base]
11 [else (combine (first lst)
12 (my-foldr combine base (rest lst)))]))

foldr is a built-in function in Intermediate Student with Lambda.

The tracing looks like
1 (foldr f b (list x_1 x_2 ... x_n))
2 ;; =
3 (f x_1 (f x_2 (... (f x_n b))))
4

5 (foldr string - append "2B" '("To" "be" "or" "not"))
6 ;; =
7 " Tobeornot 2B"

foldr is short for "fold right" and it can be used to implement map, filter and other higher order functions.

foldr consumes two parameters: one is an element in the list which is an argument to foldr, and one is
the result of reducing the rest of the list.

The first argument to the function contributes 1 to the count but its actual value is irrelevant.
1 (define (count- symbols lst) (foldr (lambda (x rror) (add1 rror)) 0 lst))
2

3 (lambda (x rror) (add1 rror))
4 ;; ignore its first argument
5

6 ;; Its second argument is the Result of Recursing On the Rest (rror) of the
list

We can use foldr to produce cons expressions.
1 (define (negate -list lst)
2 (foldr (lambda (x rror) (cons (- x) rror)) empty lst))
3

4 ;; my -map using foldr
5

6 (define (my-map f lst)
7 (foldr (lambda (x rror) (cons (f x) rror)) empty lst))

Imperative languages tend to provide inadequate support for recursion (usually provide loop constructs).

Higher order functions cover many of the common uses of these looping constructs.

Anything done with the list template can be done using foldr, without explicit recursion.

foldl is defined in the Intermediate Student language and above.
1 (define (my-fodl combine base lst0)
2 (local [(define (foldl/acc lst acc)

26

1221 CS 135: Designing Functional Programs Jaiden Ratti

3 (cond
4 [(empty? lst) acc]
5 [else (foldl/acc (rest lst)
6 (combine (first lst) acc))]))]))
7

8 (define (sum-list lon) (my-foldl + 0 lon))
9 (define (my- reverse lst) (my-foldl cons empty lst))

The tracing looks like
1 (foldl f b (list x_1 x_2 ... x_n))
2 =
3 (f x_n (f x_n-1 (... (f x_1 b))))
4

5 (foldl string - append "2B" '("To" "be" "or" "not")) -> " notorbeTo 2B"

foldl is short for "fold left"

Another built-in higher order function is build − list.

This consumes a natural number n and a function f , and produces the list
1 (list (f 0) (f 1) ... (f (sub1 n)))

Examples:
1 (build-list 4 (lambda (x) x))
2 ;; =
3 (list 0 1 2 3)
4

5 (build-list 4 (lambda (x) (* 2 x)))
6 ;; =
7 (list 0 2 4 6)

We can easily write our own
1 (define (my-build-list n f)
2 (local [(define (list-from i)
3 (cond
4 [(>= i n) empty]
5 [else (cons (f i) (list-from (add1 i)))]))]))

16 Generative Recursion
Simple, accumulative, and mutual recursion are ways of deriving code whose form parallels a data
definition.

Generative recursion is more general.

It is much harder to come up with such solutions to problems.

Example revisited: GCD
1 (define (euclid -gcd n m)
2 (cond
3 [(zero? m) n]
4 [else (euclid -gcd m (remainder n m))]))

This follows from the MATH135 proof of the identity.

An application terminates if it can be reduced to a value in finite time.

For a non-recursive function, it is easy to argue that it terminates.

It is not clear what to do for recursive functions.

27

1221 CS 135: Designing Functional Programs Jaiden Ratti

Our functions using simple recursion terminate because we are always making recursive applications on
smaller instances whose size is bounded below by the base case.

We can thus bound the depth of recursion.

As a result, the evaluation cannot go on forever.

In the case of euclid − gcd, our measure of progress is the size of the second argument.

If the first argument is smaller than the second argument, the first recursive application switches them,
which makes the second argument smaller.

After that the second argument always gets smaller in the recursive application (since m > n mod m),
but it is bounded by below.

Thus any application of euclid − gcd has a depth of recursion bounded by the second argument.

Termination is sometimes hard
1 ;; collatz : Nat -> Nat
2 (define (collatz n)
3 (cond
4 [(= n 1) 1]
5 [(even? n) (collatz (/ n 2))]
6 [else (collatz (+ 1 (* 3 n)))]))

Hoare’s Quicksort algorithm is an example of divide and conquer.

• Divide a problem into smaller subproblems

• Recursively solve each one

• Combine the solutions to solve the original problem

Quicksort sorts a list of numbers into non-decreasing order by first choosing a pivot element from the
list.

The easiest pivot to select from a list lon is (firstlon).

A function which tests whether another item is less than the pivot is
1 (lambda (x) (< x (first lon)))

The first subproblem is then
1 (filter (lambda (x) (< x (first lon))) lon)

1 ;; my - quicksort : (listof Num) -> (listof Num)
2 (define (my- quicksort lon)
3 (cond
4 [(empty? lon) empty]
5 [else (local
6 [(define pivot (first lon))
7 (define less (filter (lambda (x) (< x pivot)) (rest lon)))
8 (define greater (filter (lambda (x) (>= x pivot)) (rest lon)))]
9 (append (my- quicksort less)

10 (list pivot)
11 (my- quicksort greater)))]))

Termination of quicksort follows from the fact that both subproblems have fewer than the original list.

Degenerative quicksort works best when the two recursive function applications are on arguments about
the same size.

When one recursive function application is always on an empty list, the pattern of recursion is similar
to the worst case of insertion sort (number of steps is roughly proportional to the square of the length
of the list).

28

1221 CS 135: Designing Functional Programs Jaiden Ratti

17 Graphs
A directed graph consists of a collection of nodes (also known as vertices) together with a collection of
edges.

Binary trees and expression trees were both directed graphs of a special type where an edge represented
a parent-child relationship.

Graphs are general data structures that can model many situations.

Given an edge (v, w), we say that w is an out-neighbour of v, and v is an in-neighbour of w.

A sequence of nodes v1, v2, . . . , vk is a path of length k − 1 if (v1, v2), (v2, v3), . . . , (vk−1, vk) are all edges.

If v1 = vk, this is called a cycle.

Directed graphs without cycles are called DAGs (Directed Acyclic Graphs).

We can represent a node by a symbol and associate with each node a list of its out-neighbours.

This list is called the adjacency list representation.
1 (define g
2 '((A (C D E))
3 (B (E J))
4 (C ())
5 (D (F J))
6 (E (K))
7 (F (K H))
8 (H ())
9 (J (H))

10 (K ()))
11)

The data definition looks like
1 ;; A Node is a Sym
2

3 ;; A Graph is one of:
4 ;; * empty
5 ;; * (cons (list v (list w_1 ... w_n)) g)
6 ;; where g is a Graph
7 ;; v, w_1, ... w_n are Nodes
8 ;; v is the in - neighbour to w_1 ... w_n in the Graph
9 ;; v does not appear as an in - neighbour in g

The template for graphs
1 ;; graph - template : Graph -> Any
2 (define (graph- template g)
3 (cond
4 [(empty? g) ...]
5 [(cons? g)
6 (... (first (first g))
7 ... (listof -node- template
8 (second (first g)))
9 ... (graph- template (rest g)) ...)]))

We can use this template to write a function that produces the out-neighbours of a node.
1 ;; neighbours : Node Graph -> (listof Node)
2 ;; requires : v is a node in g
3 (define (neighbours v g)
4 (cond
5 [(empty? g) (error "Node not found")]
6 [(symbol =? v (first (first g))) (second (first g))]
7 [else (neighbours v (rest g))]))

29

1221 CS 135: Designing Functional Programs Jaiden Ratti

A path in a graph can be represented by an ordered list of the nodes on the path.

We will design a function that consumes a graph plus origin and destination nodes, and produces a path
from the origin to the destination if one exists.

Simple recursion doesn’t work, must use generative recursion.

Backtracking algorithms try to find a path from an origin to a destination.

If the initial attempt does not work, the algorithm "backtracks" and tries another choice.

Eventually either a path is found, or all possibilities are exhausted.

We need to apply find − path on each of the out-neighbours of a given node.

The neighbours function gives us a list of all the out-neighbours associated with that node.

We should write find − path/list which consumes a list of nodes and will apply find − path to each one
until it either finds a path to the destination or exhausts the list.

We will create two mutually recursive functions, find − path and find − path/list.
1 ;; (find -path orig dest g) finds path from orig to dest in g if it exists
2 ;; find -path: Node Node Graph -> (anyof (listof Node) false)
3 (define (find-path orig dest g)
4 (cond
5 [(symbol =? orig dest) (list dest)]
6 [else (local
7 [(define nbrs (neighbours orig g))
8 (define ?path (find-path/list nbrs dest g))]
9 (cond [(false? ?path) false]

10 [else (cons orig ?path)]))]))
11

12 ;; (find -path/list nbrs dest g) produces path from
13 ;; an element of nbrs to dest in g, if one exists
14 ;; find -path/list: (listof Node) Node Graph -> (anyof (listof Node) false)
15 (define (find-path/list nbrs dest g)
16 (cond
17 [(empty? nbrs) false]
18 [else (local
19 [(define ?path (find-path (first nbrs) dest g))]
20 (cond [(false? ?path)
21 (find-path/list (rest nbrs) dest g)]
22 [else ?path]))]))

Backtracking in implicit graphs forms the basis of many artificial intelligence programs, though they
generally add heuristics to determine which neighbour to explore first.

find − path always terminates for directed acyclic graphs.

It is possible for the graph to not terminate if there is a cycle in the graph
1 '((A (B))
2 (B (C))
3 (C (A))
4 (D ()))

We can use accumulative recursion to solve the problem of find−path not terminating if there are cycles
in the graph.

We need a way of remembering what nodes have been visited (along a given path).

Our accumulator will be a list of visited nodes, we must avoid visiting a node twice.
1 ;; find -path/list: (listof Node) Node Graph (listof Node)
2 ;; -> (anyof (listof Node) false)
3 (define (find-path/list nbrs dest g visited)
4 (cond
5 [(empty? nbrs) false]

30

1221 CS 135: Designing Functional Programs Jaiden Ratti

6 [(member ? (first nbrs) visited)
7 (find-path/list (rest nbrs) dest g visited)]
8 [else (local [(define ?path (find-path/acc (first nbrs)
9 dest g visited))]

10 (cond [(false? ?path)
11 (find-path/list (rest nbrs) dest g visited)]
12 [else ?path]))]))
13

14 ;; find -path/acc: Node Node Graph (listof Node)
15 ;; -> (anyof (listof Node) false)
16 (define (find-path/acc orig dest g visited)
17 (cond
18 [(symbol =? orig dest) (list dest)]
19 [else (local [(define nbrs (neighbours orig g))
20 (define ?path (find-path/list nbrs dest g
21 (cons orig visited)))]
22 (cond [(false? ?path) false]
23 [else (cons orig ?path)]))]))
24

25 (define (find-path orig dest g)
26 (find-path/acc orig dest g '()))

Cycling has been solved but this is pretty inefficient. If there is no path from the origin to the destination,
find − path will explore every path, and there could be an exponential number of them.

We can add failures and successes.
1 ;; find -path/list: (listof Node) Node Graph (listof Node) -> Result
2 (define (find-path/list nbrs dest g visited)
3 (cond
4 [(empty? nbrs) (make- failure visited)]
5 [(member ? (first nbrs) visited)
6 (find-path/list (rest nbrs) dest g visited)]
7 [else (local [(define result (find-path/acc (first nbrs)
8 dest g visited))]
9 (cond [(failure ? result)

10 (find-path/list (rest nbrs) dest g
11 (failure - visited result))]
12 [(success ? result) result]))]))
13

14 ;; find -path/acc: Node Node Graph (listof Node) -> Result
15 (define (find-path/acc orig dest g visited)
16 (cond
17 [(symbol =? orig dest) (make- success (list dest))]
18 [else (local [(define nbrs (neighbours orig g))
19 (define result (find-path/list nbrs dest g
20 (cons orig visited)))]
21 (cond
22 [(failure ? result) result]
23 [(success ? result)
24 (make- success (cons orig
25 (success -path result)))]))]))
26

27 ;; find -path: Node Node Graph -> (anyof (listof Node) false)
28 (define (find-path orig dest g)
29 (local [(define result (find-path/acc orig dest g empty))]
30 (cond
31 [(success ? result) (success -path result)]
32 [(failure ? result) false])))

This runs much faster on diamond graphs.

31

1221 CS 135: Designing Functional Programs Jaiden Ratti

18 Computing History
Charles Babbage (1791-1871) developed mechanical computation for military applications.

Ada Augusta Byron (1815-1852) helped Babbage and wrote articles describing the operation and use of
the Analytical Engine

David Hilbert (1862-1943) formalized the axiomatic treatment of Euclidean geometry. Hilbert’s 23
problems

The meaning of proof

Axiom: A statement accepted without proof. For example, ∀n : n + 0 = n

Proposition: A statement we’d like to prove. For example, "The square of any even number is even"

Formula: A statement expressed with an accepted set of symbols and syntax. For example, ∀n(∃k : n =
k + k, ∃m : m + m = n ∗ n)

Proof: A finite sequence of axioms (basic true statements) and accepted derivation rules (e.g. ϕ and
ϕ → σ yield σ).

Theorem: A mathematical statement ϕ together with a proof deriving ϕ.

Hilbert’s questions:

Is mathematics complete? Meaning for any formula ϕ, if ϕ is true, then ϕ is provable.

Is mathematics consistent? Meaning for any formula ϕ, there aren’t proofs of both ϕ and ¬ϕ.

Is there a procedure to, given a formula ϕ, produce a proof of ϕ, or show there isn’t one?

Hilbert believed the answers would be "yes".

Kurt Gödel (1906-1978) answers to Hilbert. Any axiom system powerful enough to describe arithmetic
on integers is not complete. If it is consistent, its consistency cannot be proved within the system.

Sketch of his proof.

Define a mapping between logical formulas and numbers.

Use it define mathematical statements saying "This number represents a valid formula", "This number
represents a sequence of valid formulae". "This number represents a valid proof", "This number represents
a provable formula"

Construct a formula ϕ represented by a number n that says "The formula represented by n is not
provable". The formula ϕ cannot be false, so it must be true but not provable.

What remained of Hilbert’s questions.

Is there a procedure which, given a formula ϕ, either proves ϕ, shows it false, or correctly concludes ϕ is
not provable?

The answer to this requires a precise definition of "a procedure", in other words, a formal model of
computation.

Alonzo Church (1903-1995) set out to answer "no". He created notation to describe functions on the
natural numbers.

Church and Kleene’s notation.

The class of all x satisfying a predicate f : x̂f(x). They couldn’t do this on typewriters so it became λx.

Numbers from nothing (Cantor-style).

0 ≡ ∅ or {}

1 ≡ {∅}

2 ≡ {{∅}, ∅}

In general n is represented by the set containing the sets representing n − 1, n − 2, . . . , 0.

32

1221 CS 135: Designing Functional Programs Jaiden Ratti

0 ≡ λf.λx.x (returns the identify function)

1 ≡ λf.λx.fx (returns the same function)

2 ≡ λf.λx.f(fx) (returns f composed with itself)

The lambda calculus is a general model of computation.

Church proved that there was no computational procedure to tell if two lambda expressions were equiv-
alent.

Alan Turing (1912-1954) defined a different model of computation, and chose a different problem to
prove uncomputable. Resulted in a simpler and more influential proof.

Turing showed how to encode a function, f , so that it can be placed on the tape along with its data, x.
He then showed how to write a different function, u, so that (ufx) ≡ (fx) (for any f). He called u the
universal computing machine.

He then assumed that there was a machine that could process such a description and tell whether the
coded machine would halt (terminate) or not on its input.

Using this machine, one can define a second machine to act on this information.

The second machine uses the first machine to see if its input represents a coded machine which halts
when fed its own description.

If so, the second machine runs forever; otherwise it halts.

Feeding the description of the second machine to itself creates a contradiction: it halts ⇐⇒ it doesn’t
halt.

So the first machine cannot exist.

Turing’s model bears a closer resemblance to an intuitive idea of real computation.

Turing made further contributions to hardware and software (Turing test).

John von Neumann (1903-1957) is a founding member of the Institute for Advanced Study at Princeton

Grace Murray Hopper (1906-1992) wrote the first compiler.

John Backus (1924-2007) designed FORTRAN. Won the Turing Award in 1978 and proposed a functional
programming language for parallel/distributed computation.

John McCarthy (1927-2011) designed and implemented Lisp, taking ideas from the lambda calculus and
the theory of recursive functions.

33

